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DYNAMICS OF SHEET CAVITATION AND LARGE SCALE SHEDDING 

Charles L. Merkle 
University of Tennessee Space Institute 

411 B.H. Goethert Parkway 
Tullahoma, TN 37388 

Introduction 

Cavitation deals with the vaporization of a liquid as it flow past or through a body of 
interest. As the flow velocity increases and the local pressure decreases, the liquid can 
change to vapor if the overall pressure is sufficiently close to the vapor pressure. If the 
pressure change in a flowing liquid brings the liquid below its vapor pressure, local 
regions of the fluid can change phase and become vapor. In general, the phenomenon of 
cavitation    increases    as    the    overall    pressure    in    the    system    is    reduced. 

While cavitation remains a very fascinating physical phenomenon, it also is of much 
interest in engineering circles because of the rapid damage cavitation can do to even the 
toughest materials. In the presence of cavitation, rapid pitting and other surface and 
structural damage can occur very quickly. For this reason improved understanding is 
needed to circumvent its damaging nature. 

Cavitation occurs in many different forms. In some cases, cavitation occurs as a bubble 
cloud moving through the flowfield. Such cavitation is referred to as cloud cavitation. In 
other cases, cavitation appears as a bubble attached to the surface. This phenomenon is 
known as sheet cavitation. A third type of cavitation is vortex cavitation in which 
cavitation bubbles appear in the low-pressure core of a propeller tip vortex. The present 
report focuses on the second of these types, attached or sheet cavitation. 

The dynamics of attached sheet cavitation are highly complex. The flowfield is two 
phase with both liquid and vapor being present. In nearly every case, the flowfield 
contains significant unsteady effects and the flow is generally three-dimensional. The 
multi-phase nature and the unsteadiness both increase the difficulty of making diagnostic 
measurements. The presence of the vapor phase can make the fluid opaque so that 
optical diagnostics cannot be employed. In addition, the unsteadiness makes it difficult 
to document the local nature of the flow. Despite these difficulties, large numbers of 
experiments have been conducted, and there is a considerable volume of data available in 
the literature. Certainly, this existing data has given much light on cavitation processes, 
but detailed local understanding of the cavitation phenomena is still lacking. The present 
study looks at applying detailed CFD computations to cavitating flowfields as an aid for 
guiding and improving experiments and as a means of providing increased understanding 
of the experimental results obtained to date. 



Experimental observations of attached cavitation have provided us with a considerable 
understanding of cavitation processes. Experimental observations of cavitation on a 
hydrofoil have consistently shown that the surface pressure lies below the vapor pressure. 
In addition, the location at which cavitation appears generally exhibits a pressure that is 
somewhat below the vapor pressure for the fluid temperature of interest. The cavity can 
appear in the nose-region of a hydrofoil, at the mid-chord position, or near the trailing 
edge. A particularly appropriate study for the present analysis is the two-part study of 
Franc and Michel (1996). Their data clearly shows that the location at which cavitation 
appears on an isolated hydrofoil is a function of the angle of attack as well as the 
cavitation number. 

Attached cavitation typically produces long, thin cavitation regions. The aft-end of the 
bubble is generally highly unsteady and is composed of a two-phase region in which the 
fluid in the vapor is converted back to liquid. The interface between the liquid and the 
vapor can be shiny or diffuse. A shiny interface generally implies that the interface is 
laminar, while a diffuse interface is generally characteristic of the presence of turbulence. 
Of particular interest is the experimental observation that the leading edge of the cavity 
can sometimes appear downstream of the minimum pressure point on a hydrofoil. This 
implies that the liquid successfully negotiates the lowest pressure region in the flowfield 
without changing to vapor, but then cavitates (or switches to vapor) at some higher 
pressure. This clearly suggests that non-equilibrium phenomena can be a part of the 
cavitation process. 

Cavitation Models 

Over the years a number of cavitation models have been used to study the cavitation 
process. The simplest of these treats the cavity as a constant pressure region that is filled 
with vapor. The pressure in the constant pressure cavity region is set equal to the vapor 
pressure of the liquid. The interface between the vapor and the liquid is then treated as a 
constant pressure streamline. The shape of the interface is dictated by the dynamics of 
the liquid flow and the trajectory of the constant pressure interface. Since the interface is 
a streamline, it is clear that in this 'cavitation' model, no cavitation occurs. The liquid 
flows around the bubble and the pressure of the liquid dictates the shape of the interface. 
The cavity consists of a fixed volume of vapor, but the vapor inside this bubble is 
quiescent. Consequently, this cavitation model does not involve cavitation at all (expect 
perhaps at very early times when the liquid inside the cavitation bubble was initially 
converted to vapor). 

A major difficulty with this type of model is that it requires some 'closure' condition at 
the aft end of the cavitation bubble. The closure condition can take on several different 
forms, but one classical method is to use an artificial body or wall to guide the liquid 
back from the interface (which will normally be above the hydrofoil surface) so that it 
becomes attached to the hydrofoil surface once more. Combination of this simple 
cavitation model with a velocity potential model or a full Navier-Stokes formulation is 



generally quite effective. The constant pressure cavitation region gives reasonable 
agreement with experiment, but it does lack fundamental understanding. 

The emphasis in the present research is upon using a more physically realistic description 
of cavitation that can help to provide more mechanistic understanding of cavitation 
phenomena and can lead to improved understanding and control. 

Present Approach 

The modeling approach used in the present research is based upon highly resolved 
numerical solutions of the full Navier-Stokes equations coupled with a detailed model for 
the presence of cavitation. To provide an appropriate vehicle for incorporating the 
cavitation model, the Navier-Stokes equations are expressed in a generalized form that 
describes an arbitrary fluid with an arbitrary equation of state. The arbitrary fluid 
description facilitates the extension to a multi-phase model of cavitation. 

To provide appropriate background, we start by writing the Navier-Stokes equations for a 
pure (single-phase, single-component) fluid. We then introduce the auxiliary cavitation 
model. Although most of our results are based upon a two-fluid model, we briefly 
summarize a single-fluid model that we have also tested. Both the single-fluid model and 
the two-fluid model follow directly from the generalized Navier-Stokes formulation. 

The Navier-Stokes Equations: In vector notation, the equations of motion can be written 
as: 

dQP    oQ    dE    dF    dG 
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In this expression, (x,y,z) represents the Cartesian coordinates, t is the physical time 
describing unsteady transients, and T represents a pseudo-time that is used for iteration at 
a given time step. The quantities Qp,Q,E,F,andG are vectors containing the primitive 

variables, the conservative variables, and the conserved fluxes in the x, y, and z directions 
respectively. They are given as, 
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The quantity, T, that multiplies the pseudo-time derivative is a matrix that is used to 
ensure that all terms in the equations are properly ordered so that the pseudo-time 
iteration converges efficiently under various limiting conditions. 

The quantity, v.r., signifies the diffusion or 'viscous' terms which are given by, 
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The vector of dependent variables, Qp, that appears inside the diffusion terms is the 

same variable that is used as the primary dependent variable on the left-hand side of the 
equation. Note that the vector that appears inside the physical time derivative is Q rather 
than Qp. The change from Q to Qp simplifies the computation without compromising 

the global conservation advantages of the conservative flux terms. 

The quantities, R^.R^, etc. that appear in the diffusion terms are matrices that contain 

the diffusion properties of the fluid in question. In most cases of interest for cavitation 
modeling, the primary diffusion properties are the viscosity, u, and the thermal 
conductivity, k. The physical properties of the fluid are the primary terms in the subject 
matrices. In general, all nine of these matrices are highly sparse. For a general 
compressible fluid for which the Stokes approximation has been made, these matrices 
take the form: 
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Note that the first row of all nine of the matrices, R^.R^, etc. is entirely zero.  This 

corresponds to the well-known fact that the continuity equation contains no diffusion 
terms. Similarly, the first row of all nine matrices is zero, indicating that the pressure 
does not appear explicitly in the diffusion terms. The remaining term in the second, third 
and fourth rows describe the viscous forces that appear in the three components of the 
momentum equations. Note that only the viscosity appears in the second through fourth 
rows. The energy equation is the only row that contains multiple entries in each matrix. 
These multiple entries contain the heat conduction term (the diagonal term multiplied by 
the thermal conductivity), and the velocity components multiplied by the viscous 



coefficient. The product of velocity and viscosity represents the viscous dissipation of 
kinetic energy into heat energy. These terms, taken together, describe the so-called 
viscous dissipation terms. 

The equations of motion are completed by an equation of state, a thermodynamic relation 
that defines the enthalpy in terms of two other thermodynamic variables, and 
mathematical functions describing the viscosity and thermal conductivity as a function of 
two thermodynamic variables. Since the temperature and pressure both appear in our 
primary dependent variable, Qp, we choose to express all four of these parameters as 

functions of the pressure an temperature. Thus, the equation of state is taken as an 
arbitrary function that relates the density to the temperature and pressure, 

P = p(p,r) 

The enthalpy is likewise given in terms of the pressure and temperature as, 

h = h(p,T) 

The transport properties (viscosity and thermal conductivity) are likewise expressed as 
arbitrary functions of pressure and temperature. For the viscosity, 

ii = n(p,r) 

and for the thermal conductivity, 

k = k(p,T) 

Finally the stagnation enthalpy connects the enthalpy and the kinetic energy, 

h°=h + ±(u2
+v2

+w2) 

The Navier-Stokes equations given above, along with these four auxiliary relations, and 
the definition of the stagnation enthalpy gives a fully defined system that describes fluid 
flow under very generalized conditions. If the continuity equation is replicated so that it 
applies to multiple species or phases, the equations can likewise describe the flow of 
multi-component and/or multi-species flows. One of. our cavitation models uses a two- 
phase description. Similarly we could include multiple momentum equations and/or 
multiple energy equations to cover these complexities. 

We have tested two different cavitation models based on this general formulation. One 
uses a single-phase representation, while the other uses a two-phase description. These 
two models are described briefly below. As noted above, the two-phase model represents 



our preferred model, but its characteristics are more properly put in focus by comparing it 
with the single-phase fluid. 

Single-Phase Cavitation Model: The single-phase cavitation model was the first model 
we used to simulate the liquid/vapor phase change process. In this model, the density of 
the fluid is treated as a continuous, single-valued function of the pressure. To account for 
cavitation, we replace the discontinuous change in density at the cavitation pressure by a 
rapid, but continuous variation. For convenience, we also simplify the equation of state 
so that the density is a function of pressure only, p = p(p), instead of a function of both 

pressure and temperature, p = p(p,T). This allows us to replace the energy equation by 
the statement that the temperature is constant. This approximation is not necessary, but 
simplifies the analysis slightly in that the energy equation is uncoupled from the 
momentum equations for this 'compressible' fluid and need not be solved. 

The net result of this single-phase cavitation model is that as the pressure is decreased 
below the vapor pressure the density of the water decreases from a value corresponding 
to that of a liquid to one corresponding to that of a vapor. A transition in the opposite 
direction occurs when the pressure is increased above the cavitation pressure. With this 
model, the density of the fluid in the vicinity of a hydrofoil rapidly decreases from liquid- 
like conditions to vapor-like conditions in a continuous manner as the surface pressure 
approaches the cavitation pressure. Making the density-pressure curve continuous rather 
than discontinuous as it is in under equilibrium conditions simplifies the numerical 
procedure while retaining much of the physical characteristics of the cavitation process. 

In the computations, the pressure increment across which the transition between "liquid" 
and "vapor" regimes was accomplished was treated as a parameter. The transition 
between the two densities was parameterized by choosing a pressure increment, Ap, as a 
fraction of the dynamic pressure. Excellent results were obtained when Ap was set to 
30-40% of the dynamic pressure, but solutions could also be obtained when it was 
reduced to a few percent. Dropping the temperature from the equation of state also 
decouples the energy equation from the equations of motion as in incompressible 
formulations although it is emphasized that the present formulation contains a finite 
speed of sound (in the transition region), and allows large changes in the density. This 
single-phase model therefore represents a simple approximation to cavitation in a 
constant temperature fluid. 

In representative computations with this model, the pressure increment across which the 
transition from the 'liquid' to the 'vapor' regime was accomplished was treated as a 
parameter. The transition between the two densities was parameterized by choosing a 
pressure increment, Ap, as a fraction of the dynamic pressure and connecting the 'liquid' 
density with the 'vapor' density by a cubic equation that was first-derivative continuous at 
either end. Excellent results were obtained when Ap was set to 30-40% of the dynamic 
pressure, but solutions could also be obtained when it was reduced to a few percent. 
Representative pressure-density curves for the single-phase model are given in Fig. 1 for 



a series of values of Ap. These curves give an indication of the shapes of the 'equations 
of state' used for the single-phase computations. 

As was noted above, dropping the temperature from the equation of state decouples the 
energy equation from the equations of motion as in incompressible formulations. 
Nevertheless it is emphasized that the present formulation is fully compressible. It allows 
large changes in the density and results in a finite speed of sound. For a fluid with the 
equation of state, p = p(p), the speed of sound is given by the square root of the 
pressure-density derivative, 

c = 

For the present single-phase computations, the equation of state was divided into three 
sections, a vapor region, a transition region, and a liquid region. In the vapor and liquid 
regions the density was taken as a linear function of pressure to give a quantitatively 
realistic speed of sound. In the transition region, the density was expressed as a cubic 
function of the pressure. The three regions are given as, 
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In these expressions, pi and pv represent the pressure transition points, p; and pv are 

the corresponding densities, and Ap = pi - pv signifies the width of the transition region. 

The quantities, c/ and cv are the speeds of sound in the liquid and vapor. These values 

are taken from the literature.   The liquid speed of sound, c; was taken as 1510 m/s, 

corresponding to conditions in water at 293K.   The speed of sound in vapor, cv, was 

chosen as 420 m/s corresponding to the speed of sound in a perfect gas with a molecular 
weight of 18, and a specific heat ratio of 1.286 at 293K and one atmosphere. 

The proportionality constants in the vapor and liquid regions in the example above are 
chosen to give a constant speed of sound in the pure media that is representative of that of 
the physical fluid.  For computational purposes, this choice is arbitrary.  The common 



alternative of infinite speeds of sound (incompressible fluid) in each phase is equally 
valid. In the vapor region, the speed of sound should vary with local conditions, but a 
constant is appropriate for constant temperature vapor. 

The speed of sound in the transition region varies continuously from the value in the pure 
vapor region to the value in the pure liquid region, but it reaches a quite low minimum in 
the intervening region. In particular, since the derivative of the pressure-density function 
is continuous at the liquid and vapor 'boundaries', the speed of sound at either end of the 
transition region is equal to that in the appropriate pure fluid. In the transition region, the 
speed of sound starts at the value corresponding to that of the vapor, then decreases 
rapidly to a very low value until near the end of the transition region at which point it 
increases rapidly until it reaches the speed of sound in the liquid. This continuous 
variation of the speed of sound in a mixture with a very low sound speed over most of the 
mixture region is typical of vapor-liquid mixtures. In the present case, the magnitude of 
the sound speed depends upon the width (Ap of the transition region. When Ap is 
increased, the speed of sound in the transition region increases. When Ap becomes Very 
small the speed of sound in the transition region becomes very small. In the limit as Ap 
goes to zero {dpidp -> °°), the speed of sound drops to zero. Consequently, supersonic 
velocities are easily encountered in the vicinity of the transition region. Representative 
curves showing the variation of the speed of sound in the transition region are given on 
Fig. 2 for a series of Ap's. 

Preliminary results based upon this model were obtained for an ellipse, a NACA 66(mod) 
at one and four degrees angle of attack, and for flow over a cylinder. Results for the 
ellipse are given on Fig. 3 which shows Mach number curves for flow over an ellipse at 
minus 2 degrees angle of attack. Because the angle of attack is negative, the high 
velocity flow region occurs on the under side of the ellipse. The speed of sound in the 
single-phase liquid state is 1520 mis (corresponding to the sound speed in water), so the 

Mach number there is on the order of 10~3. Near the hydrofoil, the flow passes through 
the density transition shown on Figs. 1 and 2 where the speed of sound decreases rapidly. 
Consequently, the Mach number in the density transition region increases from nearly 
zero to above Mach 5 and then back to the incompressible regime in a very thin zone. 
Inside the high Mach number zone, the fluid is pure vapor, while outside it is pure liquid. 
Thus, the Mach number contours graphically describe the shape and size of an attached 
cavitation bubble on the underside of the ellipse near the leading edge. 

Comparisons between the predictions from the single-phase model and experimental data 
from Shen and Dimotakis [1] for a NACA 66 hydrofoil were also made, but are not 
shown herein. The comparison indicated that the single-phase model could replicate the 
main features of sheet cavitation for both leading-edge and mid-chord cavitation. In 
particular quantities such as surface pressure and cavity length were predicted reasonably 
well. A series of different values of Ap (the width of the density-pressure transition) 
were used to ascertain the effect on cavity length and thickness. For cases where Ap was 
20 - 40% of the dynamic pressure, reasonably good convergence to a steady solution was 
obtained. When the values of Ap were decreased to approximately 1% of the dynamic 



pressure, the cavity interface became much sharper; however, the numerical stability of 
the algorithm deteriorated significantly, even with TVD shock capturing. Simulations 
could be run, but the values of the time-step were too small to obtained converged 
solutions. In assessing the results, it appeared that the reason for obtaining steady 
solutions was numerical rather than physical in nature. At larger values of Ap the 
interface between the liquid and the vapor was spread out over a number of grid points 
and this appeared to stabilize an otherwise unsteady flowfield. This steadiness 
disappeared as the width of the transition region was decreased. Further, for cases in 
which the transition region was too wide (i.e., the value of Ap was increased), the 
relatively small decrease in pressure did not allow the density inside the cavity to drop 
below the vapor density. 

Li addition to producing steady cavities, a second, and more fundamental, difficulty with 
the single fluid model is that it strictly enforces an equilibrium assumption on the 
cavitation process. With the single-fluid model, it is impossible for the cavity to start 
downstream of the low pressure point on the airfoil (as is observed experimentally). The 
single-fluid model requires that cavitation start as soon as the pressure reaches the vapor 
pressure, so that in all cases, the leading edge of the cavitation bubble will be ahead of 
the minimum pressure point. This effect is countered by the dual-phase model described 
below. 

Dual-Phase Model: The dual phase model treats the cavitation problem by considering 
two distinct phases, a liquid phase and a vapor phase. Each phase is treated by a separate 
continuity equation, but a single momentum equation is used for the mixture. The 
transition between phases is modeled by a rate process which appears in the separate 
continuity equations as a source and a sink of each phase. In the present model, the 
effects of surface tension are ignored and both liquid and vapor are allowed to co-exist 
over a range of pressures. The use of a rate process for converting liquid to vapor and 
vice-versa allows the cavitation inception point to occur downstream of the minimum 
pressure point in agreement with experiment thereby giving it a meta-stable-like 
character. 

To incorporate the two phases into the computational formulation, the equations of 
motion are augmented by adding a second continuity equation and by incorporating 
source terms to account for mass conservation during phase change. For treating the two 
phases, we introduce the volume fraction of vapor, or the void fraction, av, which 

represents the volume fraction of vapor present at any point. The volume fraction of 
liquid is then given as one minus the volume fraction of vapor (a; =l-av) since the 
sum of the volume fraction of liquid and vapor must be unity. From the volume 
fractions, the density of the mixture is then given by 

p = ctvpv + (l-av)p/ 

10 



where p/ represents the density of the liquid phase, and pv corresponds to the density of 
the vapor phase. The model for the two-phase mixture uses a different equation of state 
for each phase. The equations of state are analogous to the single-phase equation of state 
given above: 

Pi =
PI{P>T),     (liquidphase), and 

Pv = Pv (P>T)>     (vapor phase). 

The equations of motion of the two-phase system can then be written in a vector form 
analogous to that used above for the single-phase model. 

Before going further, we digress to compare the volume fraction with the mass fraction 
and the mole fraction that are traditionally used in mixtures of gases. First of all, note 
that the volume fraction has the units: 

_ volume of vapor _  ntf 

volume of mixture    m
3 
mix 

The density function described here for the vapor (or for the liquid) has standard units of 
density: 

_ mass of vapor _ kgv 

volume of vapor    ^ 

That is to say, the density of vapor (liquid) is defined as the mass of vapor (liquid) 
divided by the area that the vapor (liquid) occupies. As a result, the density of the 
mixture, p = ccvpv + (l - ccv)p; has the units: 

p = avPv + (l-av)pj=^-% + 4-% = -^ + 4L = %fc 
mmix m,     mmix mi     mmix    mmix     mmix 

Clearly, these are the correct units. 

When the mass fraction, Yv is used, the partial density is defined in a different manner. 
The mass fraction has the units, 

_ mass of vapor _  kgv 

mass of mixture    kgmix 

11 



and when multiplied by the density of the mixture we have, 

p - Yvp I (l   Y \) -  kgv   k8mbc I   kgl   kgmix = kgv   I   kgl   = kg 

k8mix mmix     kgmix rt?mfe     m
3
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By comparing units, we can relate the mass fraction to the void fraction as, 

ny _„ n   _k8mix   k8v   _   W?   kgv _  kgv 
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From the above relation, we can express a 'partial' density, 

p  =p7 _    mass of vapor    _ kgv 

volume of mixture    n? ■ J '"'mix 

The partial density corresponds to the density the vapor (liquid) would have if it were 
oblivious to the existence of the liquid (vapor) and occupied the entire volume assigned 
to the fluid. The partial density is the density that is typically used in multi-species 
mixtures of gases. Note we use the superscript caret to distinguish this partial density 
from the vapor density that appears when we use volume fractions. Also note that the 
units are different. The density of the vapor, pv, is the mass of vapor divided by the 

volume the vapor occupies. The partial density, pv, is the mass of vapor divided by the 

total volume the fluid occupies. In the volume fraction expression, the density, pv, 
represents the standard density—the total mass of vapor divided by the volume it 
occupies. In the mass fraction representation, the partial density denotes the total mass of 
vapor divided by the entire volume occupied by the mixture. This density implies that 
the vapor does not 'see' the liquid and responds just as though it were the only specie 
(phase) present. The difference between these two densities is exactly the difference in 
using Dalton's law of mixtures (for the mass fraction case) instead of Amagat's law (for 
the volume fraction case). Both are equivalent and both give the same answer. For 
computational purposes, there may however be a preference for one over the other. 

The third way to express the mixture properties is in terms of the mole fraction, 

X„ = 
moles of vapor _  molv 

mole of mixture    mot mix 

The mixture density is then obtained as, 

X„ = kv 
_ MmixYv _   %v   m0ly   kgmix   _   molv 

Mv k8mix  k8v  molmix     moh mix     "'■"'-mix 
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where Mmix represents the mean molecular weight of the mixture and Mv is the 
molecular weight of the vapor. From this relation, we find, 

but 

pMv _ kgmix kgv molmix _ kgv molmix _ kgv 

Mmix     rr?mix molv kgmix     m^  molv      „% 

where we have related the molecular weight to the volume.   Consequently, the  mole 
fraction is analogous to the volume fraction. 

For two-phase flows the mass fraction and the volume fraction are equivalent, but 
generally the volume fraction works better. 

mmix Wy      mmix ml       mmix     mmix      mmix 

Formulation for Time-Accurate Computations: The above development applies to steady 
state flows only. For the cavitation problem, it is imperative that we consider time- 
accurate flows to be able to simulate the unsteadiness that is characteristic of flows with 
attached sheet cavitation. For implementation in a time-accurate sense, we write the 
dual-time version of the two-phase equations. We include the physical time as part of a 
four-dimensional divergence (x,y,z,t) operator and add a pseudo-time term, x, for the 
iterations at each time step (or for iteration to the steady state if the physical time 
derivative    term    goes    to    zero). We    then    use    conservation    variables, 

Q = \p,pu,pv.pw,ph - pj in the physical time derivative and the primitive variables in 
the pseudo-time derivative along with a preconditioning matrix. The resulting vector 
form then becomes: 

dQp    dQ    BE    dF    dG     rr 

&z      at     dx     dy     dz 

where H represents the source (and sink) terms in the continuity equations representing 
phase changes. 

The two continuity equations can be expressed as one equation for the liquid and one for 
vapor phase or as the global continuity equation (the sum of these two) and either of the 
phasic equations. Here we express the system in terms of the total conservation of mass 

13 



equation (the sum of the liquid and gas phase equations) and the liquid phase 
conservation equation. With this choice, the terms in the equations become, 

QP = 

(p^ (    P    ^ (    P"    ^ (    Pv    > 
r    pw    N 

u pw pu  + p puv puw 

V 

w 
Q = 

pv 

pw 
E = 

puv 

puw 
F = 

pv2 + p 

pvw 
G = 

pvw 
2 pw  +p 

T ph°-p puh° pvh° pwh° w , P/«/ J ^ Plalu , K Plalv , ^ Plalw , 

The system is completed by specifying two equations of state: 

Pl=Pl(p,T),  and   pv=pv(p,r), 

given earlier, along with the definition of the mixture density, 

p = aiPi+(l-ai)pv 

The system is then closed by specifying analogous thermodynamic relations for the 
enthalpy of each phase, 

hi = ht (p,T)     and     hv = ^ (p,T) 

The mixture enthalpy relation likewise follows the relation for the total density, 

ph = aiPihl+(l-ai)pvhv 

The important properties that appear in the Jacobian of the flux term and also in the 
preconditioning matrix are given by differentiating the density function(s) in the 
continuity equation(s) to get the partial derivatives of density with respect to pressure, 
temperature and volume fraction. These are most readily obtained by computing the 
Jacobian, 

9QD 

PP 
ppu 

PpV 

ppw 

0 0 0 

pOO 

0 p 0 

0     0     p 

PT Pa 
pTu pau 

PT
V Pav 

prw paw 

~V~Php)   P"   Pv   Pw    PhT     PV 
PlpCLi        0     0     0    plTat     pi 
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where subscripts refer to partial differentiation.    For example, the terms with the 
subscript, p, represent derivatives with respect to the pressure, and are defined as: 

Pfc 
< dP Ju,T,a 

9vP- 
'3lO 
{ dP )u,T,a 

and 

\dP)u,T.a (SP)u,T,a XtojuJA 

The terms with the subscript, T, represent derivatives with respect to the temperature. 
They are defined as, 

o    -(** P/r= — 
^   P )p,u,ct 

PvT 
dPv 
dT ip,u,u 

and 

9T 
\°* Jp,u,ct 

fdnA 
= «/ dp/ 

dT 
)p ,u,a \ 

dPv 
dT 

= alplT + (l-al)pvT 
p,u,a 

Finally the derivative with respect to the volume fraction, a;, also appears. This term is 

Pa 
_ap 
da, = P/-Pv 

p,u,T 

Note that derivatives of the individual densities with respect to the volume fraction are 
identically zero since the phasic densities do not depend upon the volume fraction, 

/'a« "\ dP/ 

V      ' Jp,uJ 

= 0 = 0 
p,u,T 

The viscous terms in the two-phase equation system are identical to those given above 
except for the additional equation and are not re-written. 

The primary new term in the equations for the two-phase system is the source term, H, 
which ensures local conservation of mass when liquid changes to vapor or when vapor 
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changes to liquid. These source terms correspond to the phase transition model. For the 
liquid volume fraction equation, the source term includes one contribution that describes 
the rate of conversion of vapor to liquid and one for the conversion of liquid to vapor. 
The conversion from vapor to liquid appears as a source term in the liquid volume 
fraction equation, while the conversion from liquid to vapor appears as a source term. 
These terms appear on the right hand side of the conservation equation and take the form, 

dat [ dpjCLi | dpwu _   qf | (l-qf) 
dt dx 

where T; and xv are the characteristic times for conversion from liquid to vapor and 

from vapor to liquid respectively.  These times are chosen as being proportional to the 
local pressure difference, 

for p<pv:      — = 0; 

for p>pv 
1_ 

1 i P-Pv 

P-Pv 
> 

*r q 

1   _n 
q % 

and 

A representative choice with K = {Kv/Ki)=l/(p.l +pv/p/) is shown on Fig. 2 for 
various values of K ranging from 1.0 to .001. The corresponding ratio of the speed of 
sound in the two-phase mixture to the speed of sound in the liquid is given on Fig. 3. This 
figure shows the familiar minimum in the sound speed when changing from 100% vapor 
to 100% liquid. Note that in the case where the liquid and vapor densities are equal, that 
no minimum speed of sound appears between the liquid and gas phases. 

Franc-Michel Experiment: Franc and Michel [l,2]have reported a series of cavitation 
experiments on hydrofoils that are appropriate for calibration and validation purposes in 
the above models. Their experiments show that turbulent spots from exploding nuclei 
can remove sheet cavitation, but that leading edge sheet cavitation is resistant to the 
presence of free-stream nuclei and to the boundary layer state, whether it is laminar or 
turbulent. Their cavitation results show that the cavitation pattern is two dimensional 
near the leading edge where it appears at large angles of attack and high cavitation 
numbers. Mid-chord cavitation appears at middle angles of attack and middle values of 
the cavitation number. Mid-chord cavitation tends to be three dimensional. When the 
angle of attack and the cavitation number are both low, cavitation occurs at the trailing 
edge. Trailing edge cavitation is generally predominantly two dimensional. 

Careful sequences of measurements show that cavitation moves from the trailing edge to 
the leading edge as the angle of attack is increased. In general, attached cavitation is 
established downstream of boundary layer separation, but as the number of free-stream 
nuclei increases, cavitation moves toward the minimum pressure point.    When the 
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boundary layer transitions from the laminar to the turbulent state, the turbulence 
generally eliminates attached cavitation. Finally, Franc and Michel's experiments show 
that for selected angles of attack, decreasing the cavitation number can cause cavitation to 
first appear, then disappear and finally reappear again. This non-monotonic behavior and 
particularly the fact that decreasing the cavitation number causes cavitation to disappear 
suggests that non-equilibrium effects are present. 

Predictions from Two-Phase Model: A series of computations has been computed with 
the dual-phase model. In general, these results are unsteady and exhibit fluctuations 
around the trailing edge, and in some cases the leading edge, of the cavitation region. As 
the cavitation number decreases (and the size of the cavitation bubble increases), the 
flowfield becomes more and more unsteady. Some representative results from the two- 
phase cavitation model are discussed in the present section. Most of the results shown 
have been computed on a multi-block grid involving typically 20 to 30 blocks, although 
where noted the results have been obtained on a single-block grid. Representative grids 
are shown on Figs. 6 and 7 for both the near field and the far field. The plots that show 
the multi-block results include the outline of the multiple blocks. The present two figures 
are for grids of 30,000 nodes each. The multi-block configuration in Fig. 6 uses 30 
blocks. 

As a first example of the predictions from the two-phase model, we show results for flow 
over the NACA 66 (mod) hydrofoil used in the Shen-Demotakis experiment referred to 
above. Figure 8 shows the density and pressure contours for flow at 4 degrees angle of 
attack and a cavitation number of 0.91. The Reynolds number is one million, and the 
density ratio between liquid and vapor was taken as 100. Since the density is constant 
over the entire liquid region, the density contours appear only in the cavitation bubble 
region. The pressure contours, however, are distributed over the entire flowfield and, in a 
qualitative sense, retain the familiar pressure distribution of single-phase flows. Close 
inspection of the flow near the cavitation region, however, shows the pressure is 
essentially constant inside the cavity as is frequently assumed in simple cavitation 
models. We note that the pressure in this region does retain weak variations rather than 
being strictly constant. In addition, the (nearly) constant pressure region appears as a 
result of the computation, not as the result of an assumption in the modeling. Again, the 
background segments in the plot represent boundaries of the multi-blocks, and are not a 
part of the solution. 

A close-up view of the details in the cavitation region for this same computation is shown 
in Fig. 9. The velocity vectors in this region show the presence of a re-entrant jet on the 
downstream end of the cavitation region. This narrow re-entrant jet flows forward 
against the free-stream flow direction and lies between the rear-most part of the cavity 
and the surface of the hydrofoil. In addition, the flowfield gives the suggestion that a 
portion of the cavity is about to be shed into the wake. Long-term computations do show 
that the cavity length fluctuates slowly as the result of such periodic shedding. 
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Figure 10 shows the pressure contours over a wedge patterned after experiments by 
Ceccio. This figure shows the pressure contours on the fully wetted wedge as a function 
of the distance along the wedge surface. The results contrast the pressure contours when 
cavitation is present with those when the wedge surface is fully wetted. The presence of 
cavitation shows a decided change in the surface pressure that should be measurable 
experimentally. 

The next several figures concern the flow over a NACA 16-012 hydrofoil like that used 
in the Franc and Michel experiments. Both multi-block and single-block grid 
computations were obtained for this airfoil. In both cases, the grid contained from 20,000 
to 50,000 grid points. The intent of these computations was to provide a fine enough grid 
structure to ensure that the conclusions deduced from the results were not grid dependent. 
The following figures show representative solutions on these and similar grids. 

Fig. 11 shows an attempt at a laminar flow solution over the NACA 16-012 hydrofoil. 
The flow conditions of interest were, of course, turbulent, but a series of laminar flow 
solutions were attempted to understand the underlying flowfield without the uncertainties 
introduced by a turbulence model. For all but the very lowest Reynolds number 
conditions attempted, the laminar solutions resulted in laminar separation at the trailing 
edge, and the resulting flowfield was highly unsteady. Figure 11 shows the flowfield at 
one instant of time in a computation at a Reynolds number of 75,000. The highly 
unsteady flowfield is clearly indicated here. 

The emphasis in modeling cavitation is on finding hydrofoils that contain laminar flow 
over the leading edge where the cavity develops, but turbulent flow over the trailing edge 
to prevent laminar separation and to stabilize the flowfield. The present laminar 
computations demonstrated amply that the unsteadiness from a completely laminar 
solution would not allow cavitation studies to be done without a turbulence model. It is 
imperative in cavitation studies, however, that the turbulence model provide a non- 
cavitating flowfield that is qualitatively proper. Specifically this means that the flow 
must be laminar over the leading edge of the hydrofoil to allow cavitation, but turbulent 
at the trailing edge to prevent separation. Experimental evidence shows that the presence 
of turbulent flow near the leading edge prevents the formation of attached sheet 
cavitation. The present model is probably not sensitive to the presence of turbulence in 
establishing cavitating regions, but it is important to establish a correct flowfield to 
enable later improvements. 

One of the characteristics of the Franc-Michel experiments is the manner in which the 
cavitation position moves from the trailing edge to the leading edge. Franc and Michel 
also noted that the locations of transition to turbulence and separation likewise varied 
with angle of attack. The present results are computed with the k-e model, and the free- 
stream turbulence has been carefully adjusted to get the transition location and the 
turbulence behavior to match that of the experiments. Results for two different levels of 
free-stream turbulence are illustrated below to indicate the manner in which the flowfield 
changes with the turbulence level, and the sensitivities involved in matching the fully 
wetted airfoil experiments. 
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As a first example of the effects of a turbulence model, we present on Fig. 12 the velocity 
contours and the ratio of the eddy viscosity to the laminar viscosity for the NACA 16-012 
hydrofoil at zero degrees angle of attack. The present computation uses third-order 
upwind differencing and implicit discretization in time and is for a cavitation number at 
which the flow is fully wetted and cavitation does not occur. As can be seen from the 
figure, the solution, both in terms of the velocity and the turbulence level is symmetric 
about the hydrofoil as would be expected. The level of free-stream turbulence in this 
zero-degree condition has been adjusted to match the experimental observations at this 
flow condition. Hereafter, we refer to this free stream turbulence level as the 'low' 
turbulence level. As seen in the figure, the effects of turbulence are significant only in 
the boundary layers near the trailing edge (approximately the last 10%) of the hydrofoil 
and in the wake behind the hydrofoil. This local turbulent region is, however, sufficient 
to remove the large-scale unsteadiness that was observed in the laminar calculation at Re 
= 75,000 (Fig. 10). In contrast to that laminar case, the present turbulent case converged 
very well to a steady state solution with a very small recirculation zone at the trailing 
edge. Again, both the steady solution and the presence of turbulence over the aft 10% of 
the hydrofoil are in agreement with the Franc and Michel measurements. 

Corresponding results for the NACA 16-012 hydrofoil at three degrees angle of attack are 
shown on Figs. 13 and 14. The chord Reynolds number for this case is again 300,000 
and the same grid and solution procedures were used. Figure 13 shows contours of the 
velocity and the ratio of turbulent to laminar viscosity for this three-degree angle of 
attack. Here the velocity clearly shows non-symmetric (upper-to-lower surface) contours 
because of the angle of attack. The eddy viscosity likewise shows a similar asymmetry. 
The interesting fact is that turbulence starts at about mid-chord on the upper surface, 
while its transition region on the lower surface is closer to the trailing edge than in the 
zero-degree angle of attack case. 

The corresponding pressure contours for the three-degree angle of attack case are given 
on Fig. 13 along with a plot of the multi-block grid that was used for the computations. 
The computed pressure distribution on the surface is in good agreement with 
experimental measurements at these conditions. Again, the flowfield at a = 3 degrees 
results in a well converged, steady solution. Finally, a near-field view of the ratio of 
turbulent to laminar viscosity is shown on Fig. 15. More details of the asymmetry in this 
figure are discussed below. 

The effect of the freestream turbulence level on the flowfield solution is shown on Figs. 
16 and 17 for two different free-stream turbulence levels. Figure 16 shows the solution 
for the 'low' freestream turbulence conditions of the results in Figs. 12 to 15. The top half 
of Fig. 16 shows a near-field view of the velocity vectors over the rear portion of the 
airfoil for the zero-degree angle of attack, while the bottom half shows the results for the 
three-degree case. Similar results are shown on Fig. 17 for a high free stream turbulence 
level. 
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Changing the free-stream turbulence level for the zero-degree angle of attack case (the 
top plots of Figs. 16 and 17) has very little effect on the results. The velocity vectors in 
both cases are quite similar. (Note that the A different (single block) grid was used for 
the high turbulence results on Fig. 17 (this grid is given in Fig. 7), so that the locations of 
the velocity vectors is somewhat different, but overall the two results are qualitatively 
similar. 

Results for the three-degree angle of attack are, however, considerably different. The 
high free-stream turbulence calculation (Fig. 17) shows a thick turbulent boundary layer 
on the upper side of the airfoil and a thin one on the lower side, while the low free-stream 
turbulence case (discussed above) shows a thicker boundary layer on the lower surface. 
Close inspection of this result shows that the reason that the boundary layer is thicker on 
the lower surface is that there is a separation region at about 85% chord. Comparison 
with the turbulence profiles in 16 indicates that this is a laminar separation and that the 
turbulence appears downstream of the laminar separation position. This separated region 
is the reason that the lower surface has a thicker boundary layer. The low turbulence 
results are in agreement with the observations of Franc and Michel indicating that this 
prediction is qualitatively in agreement with the experiment while the results at the higher 
turbulence level (which is more representative of 'typical' conditions) are not. 

The pressure distributions on the hydrofoil for these two cases are shown on Fig. 18. The 
change in the turbulence level causes some changes in the pressure distribution near the 
aft end of the hydrofoil where the flow separates from the surface. 

Finally, a comparison with the results of Franc and Michel is given on Fig. 19. In this 
figure, the locations of several boundary layer events are tracked as a function of the 
angle of attack between negative ten and positive ten degrees. In particular, the plot 
shows the location of the laminar separation point, the start of transition to turbulence, the 
end of transition and the location of turbulent separation on the upper side of the airfoil. 
As an example, the laminar separation point on the upper surface lies at about 90% chord 
when the angle of attack is minus ten degrees. As the angle of attack is increased, the 
laminar separation point moves forward in an approximately linear fashion until the zero- 
degree angle is reached. At zero degrees, the location of laminar separation is at about 
80% chord. As the angle of attack becomes positive, the point of laminar separation 
continues to move forward, but is very rapidly overtaken by the start of transition to 
turbulence at which point laminar separation ceases to exist. 

Representative predictions from the present computations are included on Fig. 19 at -3, 0, 
and +3 degrees angle of attack. The location of the laminar separation point is seen to 
track the France and Michel results quite well at the -3 and the 0 degree locations. At the 
+3 angle of attack, laminar separation is not observed on the upper surface, again in 
agreement with the experimental results. 

Results for the 'start' of transition are also indicated for the three angles of attack. The 
computational results for the start of transition are seen to track the Franc/Michel results 
qualitatively, although they are some 5% downstream of the Franc/Michel results. This 
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difference in location probably arises because of different methods for identifying the 
start of transition. The k-e model does not provide a direct measure of 'transition' and it 
must be inferred from the velocity profiles. The computed results do show that the 
transition location moves forward gradually in the negative angle of attack region, and 
then moves much more rapidly in the positive angle of attack region. 

Finally, the computations show a single turbulent separation point at the positive angle of 
attack location. This turbulent separation point occurs at about 95% chord. Again, the 
absence of turbulent separation (on the upper side) at the -3 and 0 degree angle of attack 
cases is in agreement with the experimental observations. Overall, the present results 
indicate that the turbulence model can reproduce the observed turbulence conditions on 
the hydrofoil in the fully wetted condition and provide an appropriate background for 
employing a cavitation model. 

A substantial amount of cavitation results from the single-phase and the two-phase 
models has been presented in Ref. 3 and shows that the two models give reasonable 
predictions of cavitation for various conditions. The two-phase model provides 
capability for the quasi-equilibrium results observed in numerous experiments and so is 
the preferred model for additional calculations. 
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Fig. 3.  Mach number contours for flow over an ellipse at -2 
degrees angle of attack based on single-phase cavitation 
model.  Transonic flow region outlines cavitation zone. 

24 



CO 
cd 
CO o 

• 1—I 

l-H 

CO 

s 
"3 

> o 
s § 

c2 a 

\ > 
.   > «4—1 
k< O 
«4—1 rj 
O O 
O '43 

O CD 00 h- CD m 

P4 

in 
CN 

'*/*>! 



CO 
o 

Ü -rH 

ä & +-»-1—1 

•a ^ 

ö .2 

i"s 
co pi 

«-I—t o 
O -Ö 

<u 8 

CO TO 

<-•—I CO 
O cö 

o 3 
/5 ^ 

tub 
-1—4 

4>  -J3 
CO 
S-H 

•1—I 
CO 

Ö 
T3 

■rH 

I 
o 

-t-> 

u 
O 

> 
O 

CN 

PjnbljQ/OILUQ 



o 
o 

X 
CM 

O 
i 

CO 

(0 
+■> c 
"5 
0. 

"i_ 

O 
o o o 
O 
CO 

< 

Ü 
< Ü 

CO 

(0 z 
HL 
o 
W 
o 
O) 
c 

(0 (0 
o (0 
o 3 

GQ o 
o CO 
CO > 

c2 
O 

■a 
Ü 
O 

o 

J.s 
> 2 

to 
& 

I« 5 1      rO 
o 
rn 

T3 

• I—I 



o 
o 

x 
T- 
o 

I 

CD 

< 
O 
< 
z: 

w 
c 
o 
a. 
2 
O 
o 
o 
o 
o 
CO 

o 

cS 
O 

T—H 

o 
I 

<: 

"& 
Ü 
O 

'S) 
d 

•1—I 

O 

•T-l 

> 
t—i 

I 

ID 
d 

+-> 
d 
O 
ft 

Til 

•& 
O o o 

2 'S 
iß 
£    . 
fe   CO 

!->' 
ab 

•t-l 

00 
CN 



05   <*«^«>io,*TOCMi- 
^   ooooöoöööo »S8385o^g^S 

_J © 
73 

o o 
^^™ O T" o 
li- (0 

© 

II 
o 
*s 
CB 

CC a 
DC 

■■■■ (0 

< « c 
3 
Q 

a> o 

to. o 
^m 

J* T— X 
© C!> o 
(8 

33 O *- 
(8 H 1 

»♦i v. v. 
O a> <D ■ JU n © 

E 
(8 

E 
3 
E 

E 
3 z 

© 
© 

e 
o (9 

£ *■» 

D) 
© 
Q 

O 
C 

> 
CO © 

<* Ü DC 

o 
to o    o 
O 

o    o o o 
SCO CM i- o o o 

ö    ö    ö d ö 

o    o    o 
O      Y-      CM o     o     <3 
odd 

o o 
<o in 
o o 
d d 

o 
s 
d 

o    o    o 
CO      CM      T- o    o    o 
odd 

o    o    o 
O     r    N o    o    o 
odd 

o 
&Ö 3 o 

CO     II 

O 

S3 

ö ° 
O || 

2 O 
O Jo" 

O ü 

S ii 

CO     S 
ö    <U 
Ü    co 

T3   cd 

s * 

oo 

•i—t 

<u 

CN 



^   ooööööööoo 
CD 
Q 

< 

Z) o 
jr 
ü 
iu 
DC 

O 

UJ 

o 
Ü 

0) o 
T3 o 
o T- 

£ H 

* 
O 
+3 

o « 
© ce 
a X». 

CO 
h (0 

cs c 
3 a> 
Q D 

o 

(B 

O 
i 
© 

c 

© 
Q 

0> o 
Ö ,-" 

»» n 
a> © 1 I 
1 3 
CO O 

AS C 
> >» 
(0 Q> o a: 

T3 

ooooooooo 
COW^COCMI-OI-CM 
ooooooooo 
ÖÖÖÖÖÖÖÖÖ 

U) 
CO o 
Ö 

o W 
in i-i 

O 
d -t-< 

ü 

> 
> 

in • 1—( 
Ü 

^o 
d 13 

> 
e>J0 
ö 

o T3 
CD 

o 

in 
CO 

■   2 
1—H 
Ü 
Ö •rH 

*n 
•1-H 

- 
d fe 

•1^ O 

Ö CO 

o 

o 
•r~t 

- ~v~ u 
d 

o 

U) 

•1-H +-• 
-t-> 
•f-H > 

- 
d * t+-l 

■ 
o 

«3 
■ 

o 
CO 

•T—1 o 
> 

d 2 'S 
o o 

■ « ^ 

in CD 

I—1 

- CO 

d £ CD 

•' 

ON 

bJO 
•l-H 

PH 

o in co .    CM o o 
ö o 



a 

HI 

QE 

CO 
•o 
c 
3 
o n 

(0 E 
0) CO >_ CD 
3 i_ 
CO 

Q. o 
~ ■"O 
CO 
5 

OJ 

Ö) ** 
c a 
*-• 
(0 ■» 

■tB» O) 
> ■o 
CO tf) 
Ü 5 

» ■o o o> c 
"Ö CO Q. 

f E 
o 

E 
o i I lb 

O) > © (0 ■o 
■Ö o 0> 
CD c ■t-t o CD 
CNf o 

5? Q. 

I  I  I  I  I  I  I  I  I  I  I   I  I  I   I  I   I   I   I  I I ' ' ' ' 

CD 
C 

13 
"> 
tö 
Ü 

i c 
o 

'■■   ■'■''■   '■■''''   '  I    I    !    1    I    I 
o 
CM 

O 
CO 

O o 

ui/N 'ajnssajd uoiiBqjnped 

O 

a o 
-*-» 
S3 

X> 
E 

CO 
in •i—( 
CO id 
o 

CO 
CO 
<D 

o '—| 
cd o 

CJO 
Ö 

+-> 
cd 

CO 
in (D £ CM cd 
o E o 

>< Ö iH 
O CO 
Ö 

T3 
Ö 
cd 

o 
CM ÖD 
© 

ca
vi

ta
tin

 
e 

w
ed

ge
. 

m 

O 

Fi
g.
 1

0.
 

C
om

pu
te

d 
26

.6
 d

eg
re

 



o 
io 
h. 
II 

Ü 

cc 

CD 
0 

Ö) 
© 

"Ö 

CO 

CM 
T— 

CO 

< 
O 
< 

o 

O 
O 

s in 

CO C+-I 
O 

1-1 

£ J-i 
(D 

CO 

O 
-t-> i 
Ö co o T3 
f) 

•T—1 

O 

o A) o 
I—1 ri 

CD 

> J-i 
<1> o 
CO rd 

• i-H o 
£ a 
B •a a ,_, 
tu •CH 

is & CO o 
«4-1 
o •Ö 

-t-> £> o Ä 

CO 

O 

CO *0 

CO 
2 < 
Ü O 

-(-> $ 
g cd 

CO 

Ö 

ÖX) 
•r-4 

CO 
CO 
PH 

CN 
CO 

CO * 
CO T— ■<* CO T— m CO i^ "*r 
■* o> CO m r-» o CM Tj- C\l o CO 
C\J CM CO N- r~ CO o •sf N CM 
IO N» CO CO n- ■* in in Tf CO CO 
co ,_ O) ••"■ CO lO h- o> co co ■* 

"r- o> CO co ■* (M o o CM ■t 



o 
»fr- 
CD 

"U 
>» 
X 

T— 
o 
CD 

< o 
< 

CO 
_C 
Ü 
C 

CD 

T3 
i_ 
CD 

"E o 
'S 
CO 

CO 

CD 

0) 
■o 
O 
E 
8 c 

_CD 
=3 

■e 
H 
JX 
CD 
i 

CM 

CO o 
c o 
CO o 
CD o 
P o 
CO CO 
a> II 
Q o 

DC 

*    CO    CM    CO 

ONNort'-a)iO(Otö 

CM CO    to    TT    CM    tf> 

<u 
Ä +-» 

!-H 

.o *    • 

• *5 o «1           « 
o o 
Ü o 

.S3 ^ 
> II 
c3  «3 
§ P4 

•I-H s^ 
CO     Ü 

<—<    CO 
o .e 

+-•    CO 

Oä 
o .öo 

>^   4) CO 

»rt    ü CO 

ü  ob 

'S-3 
•2 g +J    <u 

2 N 
<u 
,a r^ 
^ ,o 
*ö 's 

CO ^ 

s? >> u* 
O  CN 

§9 ü vo 
-fr^ 
o < 
o O 

13 <! 
>£ 
CN 
I—1 

O0 
•I-H 

fe 

CO    -4*    to    CO f    f)    W    N   > 
StD"*CM»-C7>r^tOtOco 

Sffl    »•    «A    0>    N    O 
CM   r-.   »-;   *o   o>   *r> 

to"   »n   r>   CM   ö   Ö   CM 
r>   -  °» 
—   »-  o» 



CD 
O) T> c O 
Ü h c 
0) <D 
1_ Ü 
<D C 

*= (D 
XJ ZJ 

a> € 
"U rj 

mmmm o ■ 
H o cr 

**— T3 a) 
o CO CM 
Xm • • 

"O 
>» 

CM 

O 
i 

CD 

< 
O 
< 

.* 
Ü 
CO 
JS 
ra 

H— 

O 

<u 
D) o 
C o 
ro o 
CD o 
p o 
O) CO 
CD II 
Q <u 
CO DC 

w> o ,— o» N. u> ■*■ CO ^_ 
1^ W> CO CM X CM o CO <o O 

m CO kO o T i**. 
CM *a CO CM w> CO CM u> CO CM 

lO *-* lO o CM o CO CM m CO CM 
T- *— 1— ^* ,^- CO r- to CO CM in 

r-CMCMCOCOOiO'-tOr^CM 

A^OCMcOOCM-tfeO^oS 
'->rr>.0'r--^QoScocMcM 

-   T> «o  3>  *-  ^F   -*   ^ 

£ Ö o o 
co  O 
o o 
o  CO 
«3     .. 

*: 

2 ^ 
Ö      ..N 

fa o 
'S i3 
O   ai 

o 
& 
CO T—I 
o wo 
o ö 

_co cd 
> CO 

T3 ob 

O <D 

CO 

O 

CN 

fi ° O     ' 
Ü ^o 

> 

ro 

ob 

St 

CM    O 

"  "~   *?  T 



a> 
CD ■o 
C o 
Ü c E 
2 o o 
<D c 

5= a> 
XI 3 

€ 
Bwmm 

■a 
i— 

3 

o o CT 

o CO 
<D 
i 

CM 
Xm • • 

>» 

CM 

o 
I 

(D 
T- 

< 

Ü 
< 
2 

ü 
(0 

CO 
■ 
o 
■ 

CD 

CD o 
c o 
ca o 
o o 
P o 
CD co 
<D II 
Q CD 
CO CC 

CN      . 

38 
—• o <! ° 
U^ 
< Ö 
cd    S 

g* 
3'S 
II 
U-<    o 

•2 's Ö   o 
O    <o 
Ü r-=5 

1/3 
«5 

J-i 

X)    (U 

CO 



o 
Ü 
CO 

mmmm 

> 
im. 

CO c 
E 
CO 

c 
13 

JQ 

O 
O 

■ MM 

CO 
DC 

© 
•o 
o 
E 
8 
c 

•fi 
=3 
}- 
CT 
CD 
i 

CN 
O 
O     D) 
O     C 
o"   O 
°   E CO    p 
ii   5 
a =5 
CO 
CD 
CD 

CD 
•a 

Q. 

•o 
CD 
CO 
jo 
x> 
•a 
c 

CM 

o 
CD 

< 
Ü 
< 

CD 
•a 
i_ 
o 
I 

•a 
CO 

in co r- CT> t^- in ^ n CJ Y— 07 (~- *— m CO (M s CJ o CO I» O 
T~ tf> CO V— m o s »~- T— 3 

in CJ U1 CO CJ m CO CJ co CJ 
r- u> CO CJ o CO CM m CO CJ 

13) 

CO 
<L> 
<D 

feb 
<D 

"Ö 
<D 

CO 

O +-> 
Ö 
o 
Ü 

• i—i 
CO 
O 
o 
CO 

6 

,0 

o 
o 
o 
o 

Cy  en 

> 
4) ü 

cd 

cd 

P    O 

«r> 

VO 
CO 

T-ir-Y-T-,-cor-»incocjm 



c 
.2 
2 
CO 
Q. 
CD 

CO 
<D 
D) 

UJ 
O 
c 
"5 

8 
c 

■fi 

B 
E 
CO 

a> 

o 

o 
o 
o 
o 
CD 
CO 

II 
© 

DC 

© 

"8 s 
8 
c 

.52 

■e 
H 
er 
CD 
i 

CM 

H 

? r 

M'f-rU.'ii.i .' f f TTSJ 

rjilii 

-"'    <i<}1 ■''H 

J#1$li I1!'!' 

UHU: 
I. I 

Hi 
Hi.ffi 

feUi fKmft T» fHU 
•? f 

ÜM 

' ff M 
tWf 

W// 
«3 

W 
i.l 11 
•'*' /r 

*&/,/„ 

MIM 7H w 
Iffi i 

«i« 

i 

o 

_© 

© 

O) 
© 
Q 
CO 

rfui! 

SöiM 
in 

sUV 

o 
CD 
N 

CO 
CO 
O 

• t—i 1> 

O 
Ü 
Ö 
<D 

73 £ 
1—1 

o S 
VO 

CO 
CD 

'-' £ 
<C co 

i o 1) 
CD 

;< 
'A £ 
n (J 

Ö h-1 
o . 

•T—1 

00 O 
(U d 
l-i -»—> 
<u ■St 
ÖXJ C+-I 

<l) o 
til) <u 
Ö ÖÜ 

•I-C 

•T-H £j 
co 

«4-1 CD 
o feh 
Ö <D 
o T3 
co 

"5 CD 
<1> 

J3 
o 
O 

-t-> 

id 

ttf) 
•I-H 

CO 

r>  T-  o  "J        "J 
T- »- »- «o r- u» cj   *-   ö  CM 

o -•  o *>        "> 
»-  T-  T-  eo r^  >o CM   T-   ö   CM 



8 
c 

■fi 

B 
E 
a 
£ 
V) 
© 

c 2 
O    -2> .—       -r- 

2  • 
CO 
Q. 
<D 

O) 
CD 
D) 

■D 
LU 
Ö) 
C 

1 

E 
JC 

o 
D) 
< 

JL> 
Q. 
X 

UJ 

<D 

"8 s 
8 
n 

o -e 
o    rj 
co   H- 

II    cr 
©    <» 

o 
o 
o 

ze
ro

 
ca

se
. 

•r;H       <U 

2h
y 

tu
rb

i 

o-0 
.i. «J 
M3    <D -   £ 
< ? o 8 
^ * 
fc* 
«*H      ÖJ0 

§H 00 
en 

o     . 

re
gi

 
ta

ck
 

ed
ge

 
of

 at
 

&0 13 
e to 

I—i    Ö 

'S3 B 

a S 
«4-H      Ü 

2 ö> M    <D 
O T3 
<*>   „ •r1   <L> 

S.Ö 

C
om

 
an

dt
 

• i—i 



CM 

< 

Ü 
< 

■Ö 
O 

8 c 

•fi 

I 
CM 

0) 

s 
2> 
a> a 

CO 

CO 

£ 
(D 
O 

5C Q) 
O 
Ü 

3 
o o o 

0) o 
0) o 

CO 0 II 

Ü. f£ 

s 
2> 
O) 
0> 
Q 
o 

o 
X 

Ü 
>< 

o 

o 
w 

> 

o 
s 

1—I 

O 
Ö 
o 

• I—t 

OH 

o 
Ü 

<D 
CO 

•& 
o 

i—< 

Ö 
• I—I 

00 

oo 

«i-H 

0\ 
CO 



5- 

Ö 

O 

HO 

o 

Ö 

e o 

o 
Ö 

HO 

00 

H I ^> 

GO 

® 

oo 

< 

M o a -*-> 
-t-> a 
O 

i—H 

pi 
I/) 
»-I 

> 
Ü 

•T—I +-> 
IM 

§ A' 
CO 
H 

w 

—< .o 

O VD 

~ u 
° s 

ON 

t>0 


